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1 Biological preparation

We prepared 380 µm-thick coronal or sagittal slices from the lateral portions of
4-12 week old guinea-pig (CPA, Olivet, France) occipital cortex, as well as from
adult ferret (Marshall, France) occipital cortex in some early experiments, as de-
scribed previously [1, 2]. Slices were maintained in an interface style recording
chamber at 33-35◦C in slice solution containing (in mM) 124 NaCl, 2.5 KCl, 1.2
MgSO4, 1.25 NaHPO4, 2 CaCl2, 26 NaHCO3, and 10 or 25 dextrose, and aerated
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with 95% O2-5% CO2 to a final pH of 7.4. Intracellular recordings were performed
in all cortical layers after 2h of recovery. All research procedures concerning the
experimental animals and their care adhered to the American Physiological Soci-
ety’s Guiding Principles in the Care and Use of Animals, to the European Council
directive 86/609/EEC and to European Treaties Series 123 and was also approved
by the local ethics committee “Ile-de-France Sud” (Certificate 05-003).

2 Electrophysiology

Sharp electrodes for intracellular recordings were made on a Sutter Instruments
P-87 micropipette puller from medium-walled glass (WPI, 1BF100) and bevelled
on a Sutter Instruments beveller (BV-10M). Micropipettes were filled with 1.2-2 M
potassium acetate - 4 mM potassium chloride and had resistances of 65-110 MΩ
after bevelling. An Axoclamp 2B amplifier (Axon Instruments) was used for Vm
recording and current injection. A Digidata 1322A card (Axon Instruments) and
the PC-based software ELPHY (developed by G. Sadoc, CNRS Gif-sur-Yvette,
ANVAR and Biologic) were used for data acquisition at 20 kHz. The Axoclamp
was used either in continuous current-clamp (‘bridge’) mode or in discontinuous
current-clamp (DCC) mode. In both cases, the capacitance neutralization was set
at the maximal possible value, slightly before the onset of oscillations, to achieve
the fastest possible electrode charging time (as assessed by the Monitor output
viewed at high temporal resolution on an analogical oscilloscope, allowing to ad-
just the time constant of the electrode response decay after injection of ultra-short
current pulses in discontinuous mode). The switching frequency of the DCC mode
was chosen accordingly, so that the sampling of the Vm took place after the elec-
trode transient had decayed to a plateau (http://www.moleculardevices.
com/pages/instruments/axon_guide.html).

3 Real-time computer implementation

We used the hybrid RT-NEURON environment (developed by G. Le Masson, IN-
SERM 358, Université Bordeaux 2), a modified version of NEURON [3] running
under the Windows 2000 operating system (Microsoft). To achieve real-time elec-
trode compensation and simulation of synaptic inputs (dynamic-clamp) as well as
data transfer to the PC for further analysis, we used a PCI DSP board (Innova-
tive Integration) with four analog/digital (inputs) and four digital/analog (outputs)
16-bit converters. The DSP board constrains calculations made by NEURON and
data transfers to be made with a high priority level by the PC processor. The DSP
board allows input (the total recorded potential Vm + Ue to be compensated, and
then incorporated in the equations of the models in the dynamic-clamp case) and
output signals (the current to be injected into the cell; the compensated Vm for the
acquisition system) to be processed at regular intervals (0.1 ms time resolution). A
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custom interface or a CyberAmp 380 (Axon Instruments) were used to low-pass-
filter at 6 kHz the analog input/output signals of the DSP board and to adjust their
ranges in order to improve the digitalization resolution.

4 Data analysis

The PC-based software ELPHY (developed by G. Sadoc, CNRS Gif-sur-Yvette,
ANVAR and Biologic), Matlab (The Mathworks, Natick, MA) , Scilab (INRIA
/ ENPC, http://www.scilab.org) and custom-written C-code were used.
All statistical tests were performed using the software Statview 5.0 (SAS Institute,
Cary, N.C.). All values are given as average ± standard deviation or, for small
sample size, as average and range. A P-value < 0.05 was required for statistical
significance.

4.1 White noise injection

Since the injected subthreshold current noise had a mean of 0 nA, we only com-
pared the standard deviations of recorded Vm distributions with theoretical values
of standard deviations predicted from the noise parameters and passive neuron pa-
rameters derived from responses to small current pulses. Relative error is:

100×
|σexperiment − σtheory|

σtheory

and

σtheory = R

√
dt

2τm
σI

where R is the input resistance, τm is the membrane time constant, dt is time step
(0.1 ms in our experiments) and σI is the standard deviation of the input current
(for a single sampling step).

4.2 Square conductance pulses

For each train of injected pulses, an initial stable part of the response was selected
for analysis (as assessed by a non-significant Spearman non-parametric test for
correlation between response amplitude and time), in order to minimize deviations
from the theoretical prediction due to small drifts in the recording.

Recordings were analyzed on phase plots of Vm(t+ T/4) vs. Vm(t) (where T
is the period of the waveform), where predicted responses for a passive membrane
are squares. We fit an optimal square to the experimental phase plot (least square
minimization of the average distance of experimental points to the square), then
compared the length of the side and the tilt between the optimal square and the
theoretical square (equations below). The level of noise in the experimental trace
was quantified by the average distance (in mV) of the data points to the optimal
square.
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In each cell, a given parameter configuration is always tested in both AEC
and DCC. Differences between the two conditions are thus tested with a paired
statistical test, the Wilcoxon non-parametric test. Correlations between measures
derived from the phase plots and stimulus parameters were evaluated using simple
linear regression analysis: the P-values given correspond to the null hypothesis that
the slope of the linear regression is 0 (two-tailed t-test). For descriptive statistics
and linear regression analyses, one data point was excluded (for both methods and
all error measures): given the very small theoretical prediction for the side measure,
in one case of 1000 Hz stimulus frequency, the relative error on the side measure
was extremely large (due to division by this very small value) and constituted a
clear outlier. The removal of this one point did not affect the results of the Wilcoxon
tests nor of most linear regression analyses.

Response of a passive membrane to square conductance pulses

We consider a passive membrane model with a square conductance wave stimula-
tion described by the following equation:

C
dVm
dt

= −gL(Vm − Vrest)− g+(t)(Vm − E+)− g−(t)(Vm − E−)

where C is the membrane capacitance, gL is the leak conductance (1/R), E+ and
E− are reversal potentials, and g+(t) and g−(t) are time-varying conductances.
The conductances are alternating square pulses, i.e., g+(t) = g and g−(t) = 0
when t mod T ∈ [0, T/2[, and g−(t) = g and g+(t) = 0 when t mod T ∈
[T/2, T [, where T is the period and g is the maximum conductance.

Because the total conductance g + gL is constant, the response Vm(t) is piece-
wise exponential with time constant (g + gL)/C. After the response settles in the
stationary regime, it is periodic (period of the stimulus T ) and consists of an alter-
nation of two pieces of exponential functions, of the form a+b exp(−(g+gL)t/C).
It follows for any given delay d, V (t + d) and V (t) are related by an affine rela-
tion on every smooth piece, and there are 2 × 2 = 4 different sets of parameters.
Therefore the phase plot defined by the graph of (V (t), V (t+d)) is a quadrilateral.
When d = T/4, symmetry arguments imply that it must be square.

The corners of the square correspond to the discontinuity points of the conduc-
tance pulses. Solving the differential equation gives an explicit formula for their
coordinates. The coordinates of the center of the square are

(Cx, Cy) = (
g

g + gL

E+E−

2
,

g

g + gL

E+E−

2
)

and the coordinates of the first corner are

(Mx,My) = (Cx +
A

2
, Cy +

A

2(1 + α)
)
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where

A =
g

g + gL
(E+ − E−)

1− α2

1 + α2

α = exp(−(g + gL)T
4C

)

The three other corners are obtained by rotations around the center C with angles
of 90◦, 180◦ and 270◦.

4.3 Colored conductance noise

Fragments of responses to fluctuating conductance injection (see [4] for stochas-
tic equations generating these conductances; parameters used here were similar)
were selected so as to avoid rare spikes or rare, very sharp electronic artefacts
(seen in some recordings independent of compensation method or protocol used)
which introduce spurious high frequencies. Vm distributions were obtained for
each fragment and their parameters were averaged over fragments. Theoretical Vm
distributions were computed using a steady-state solution of the passive membrane
equation (see [1] for equations ) and known injected conductance and passive mem-
brane parameters (derived from response to small current pulses). The difference
between theory and experiment was quantified by the relative error:

100×
|paramexperiment − paramtheory|

paramtheory
.

The Wilcoxon test was used to assess whether the relative errors for AEC and for
DCC were significantly different. Each fragment was also fit by the theoretical
template of the PSD [5] using a simplex fitting algorithm [6]. The theoretical
template was:

SV (ω) =
1

1 + ω2 τ̃2
m

[
Ae τe

1 + ω2 τ2
e

+
Ai τi

1 + ω2 τ2
i

]
.

where ω = 2πf , f is the frequency, τ̃m is the effective membrane time constant,
Ae andAi are amplitude parameters and τe and τi time constants for excitation and
inhibition, respectively. Fits were realized by fitting both Ae and Ai, as well as τe
and τi. τ̃m was fixed to the value estimated from the recordings. Different initial
conditions (“first guesses”) were given to the fitting procedure to ensure that there
was no convergence to local minima. Fit errors were averaged over fragments (Fig.
5f).

4.4 Spike onset analysis

Spikes were triggered by a realistic dynamic-clamp 300s-long protocol combining
randomized injection of AMPA synaptic inputs of 5 different amplitudes at 10 Hz
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and injection of a background of colored conductance noise [4] in either a “high
conductance” (gi > ge), or a “low conductance” configuration (ge = gi) (Z.P. et
al, http://arxiv.org/abs/0706.1306). For each injection protocol, an
initial stable part of the response was selected for analysis (as assessed by a non-
significant Spearman non-parametric test for correlation between spike threshold
and time). 914 spikes were analyzed on average for each protocol (range 251-1895
spikes). Both AMPA-triggered and spontaneous spikes were analyzed together.
Spike threshold was detected using a threshold on the derivative of the Vm (similar
to procedures described in the literature, see [7]): for the analysis shown on fig
6, a threshold of 83.3 mV/ms is used for both AEC and DCC injections. The
smoothed DCC trace was obtained by replacing each data point i by the average
of 9 surrounding points (i.e. an average from i − 4 to i + 4). The 9-point size of
the sliding window was chosen by visual inspection of the resulting trace in order
to produce spikes that maximally resemble the spikes recorded in AEC. The slope
of the depolarization preceding the spike is computed by a linear regression on 2.4
ms before the spike (excluding the data point at which the threshold is detected).
Spike-triggered averages of theVm show that the average depolarization preceding
the spike has a duration around this value in these protocols (not shown). Both a
linear and an exponential function were fit to the clouds of points representing the
threshold of each spike as a function of the slope of the preceding depolarization.
The exponential fits were in some cases slightly better than the linear ones, but
in other cases they were indistinguishable: since in those cases the time constants
of the exponential fits have aberrant values, the exponential fits were not analyzed
further. The significance of the correlation between slope of depolarization and
spike threshold was assessed using a non-parametric Spearman correlation test.

5 Kernel estimation

5.1 The least square problem

We assume that the neuron and the electrode respond linearly to the injected cur-
rents we use. We will discuss this hypothesis later. Then the recorded potential V
in response to an input current I is the linear convolution:

V (t) = V0 + (K ∗ I)(t) = V0 +
∫ +∞

0
K(s)I(t− s)ds

whereK is the impulse response of the system (neuron + electrode), which we call
the kernel, and V0 is the resting potential. In the digital domain, the formula reads

Vn = V0 +
+∞∑

0

KpIn−p

If the time-varying current I is known and V is measured over a long enough
period of time, then it is possible to calculate the kernel K. Assuming that the
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measure is corrupted by gaussian noise, the best estimation of K is the solution of
the linear least square problem, i.e., (K,V0) minimizes

E =
N−1∑
n=0

Vn − V0 −
+∞∑
p=0

KpIn−p

2

where N is the number of measurements, i.e., N∆ is the duration of the stimula-
tion, where ∆ is the sampling step (∆ = 0.1 ms in our experiments). Typically, the
stimulation lasts 5 to 20 s, which corresponds to 50000 – 200000 measurements.

From ∂E
∂V0

= 0 and ∂E
∂Ki

= 0 for all i we find:

∀i ≥ 0,
N−1∑
n=0

VnIn−i =
+∞∑
p=0

Kp

N−1∑
n=0

In−pIn−i + V0

N−1∑
n=0

In−i

N−1∑
n=0

Vn =
+∞∑
p=0

Kp

N−1∑
n=0

In−p +NV0

with the convention Ik = 0 when k < 0 (no input current before time 0). In the
following we define 〈xn〉 = 1

N

∑N−1
n=0 xn (average over all samples).

In practice, we consider only the first M steps of the kernel K, so that the
equations above can be expressed as a matrix problem AX = B, where A is
a square matrix with coefficients ai,j = 〈In−jIn−i〉 for i, j ∈ {0 . . .M − 1},
ai,M = 〈In−i〉 for i ∈ {0 . . .M − 1}, aM,j = 〈In−j〉 for j ∈ {0 . . .M − 1}
and aM,M = 1; X is a column vector with Xi = Ki for i ∈ {0 . . .M − 1} and
XM = V0; B is a column vector with Bi = 〈VnIn−i〉 for i ∈ {0 . . .M − 1} and
BM = 〈Vn〉. Solving this linear equation for X gives the coefficients of the kernel
K and the resting potential V0.

5.2 Fast implementation

Although there is no theoretical problem in solving the linear problem described
above, the matrix A can be large and each coefficient ai,j is a sum over all samples.
But we note that in the limit N → +∞ (infinite number of samples) 〈In−iIn−j〉 =
〈InIn+i−j〉 for a stationary current. In this case the matrix A has only M + 1
distinct coefficients. However in practice the number of samples is finite, so that
for j > i,

〈In−iIn−j〉 =
1
N

N−1−i∑
n=−i

InIn+i−j

= 〈InIn+i−j〉 −
1
N

N−1∑
n=N−i

InIn+i−j

In general, the correction term vanishes only when N → +∞, but we can ensure
that it also vanishes for finite N by enforcing In = 0 for all n ∈ {N − M +
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1 . . . N − 1}, i.e., there is no input current at the end of the stimulation. In the
same way, 〈In−i〉 = 〈In〉 for all i ∈ {0 . . .M − 1}.

Then we define ak = 〈InIn−k〉 for all k ∈ {0 . . .M − 1}, and y = 〈In〉, so
that the matrix A can be written as follows:

A =



a0 a1 a2 . . . aM−1 y
a1 a0 a1 . . . aM−2 y
a2 a1 a0 . . . aM−3 y
. . . . . . . . . . . . . . . y
aM−1 aM−2 aM−3 . . . a0 y
y y y . . . y 1

 =
(

Ã Y
YT 1

)

We also define X =
(

K
V0

)
and B =

(
B̃
〈Vn〉

)
and YT =

(
y y . . . y

)
.

Solving the matrix equation by block gives

V0 = 〈Vn〉 −YTK = 〈Vn〉 − 〈In〉
M−1∑
p=0

Kp

(Ã−YYT )K = B̃− 〈Vn〉Y

The coefficients of the matrix U = Ã −YYT are ui,j = a|i−j| − 〈In〉2. The
coefficients of the vector B̃ − 〈Vn〉Y are 〈VnIn−i〉 − 〈Vn〉 〈In〉. The matrix U is
a Toeplitz matrix, and solving a linear problem for a Toeplitz matrix can be done
very quickly with the use of the Levinson-Durbin algorithm (which is documented
for example in [6]).

It appears that it is not necessary to store all the values of Vn and In. The
averages 〈VnIn−j〉 can be computed online in real time (M additions at each time
step).

5.3 Choosing the input signal

The input signal I must chosen so that

1. it is zero at the end of the stimulation (last M steps, where M is the kernel
size) so as to use the Levinson-Durbin algorithm, as shown in the previous
section;

2. the neuron response is essentially linear;

3. it makes the best possible use of the D/A converters of the acquisition board.

Constraints 2 is satisfied by letting (In) be a sequence of independent random
numbers with appropriate variance. Constraint 3 is satisfied by letting each current
step In be a random number with uniform distribution in the range of D/A con-
verter. Thus, the input current is a stationary non-gaussian white noise (digitally
sampled). We discuss this choice in the following.
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Linearity of the membrane response

In general, the membrane potential does not respond linearly to the input current.
However, it can be considered as locally linear around a given value of the poten-
tial; our strategy is thus to inject a signal that has a small effect on the membrane
and a large effect on the electrde.

Because the electrode time constant is much smaller than the membrane time
constant, the choice of a white noise input signal ensures that the membrane poten-
tial will not vary much while the electrode potential will vary much more. Indeed,
the standard deviation of the response of a membrane with time constant τm and
resistance Rm to a white noise is proportional to Rm/

√
τm. Thus, if the electrode

has time constants τe and resistance Re then the ratio of electrode response over
membrane response is

Re
Rm

√
τm
τe

For a sharp electrode, the electrode and membrane resistances have the same mag-
nitude and with a properly adjusted recording setup, τm ≈ 100τe, so that the elec-
trode response is about 10 times larger than the membrane response. Thus it is
possible to ensure that the membrane potential remains within about 1 mV of its
resting potential while the recorded potential varies by 10 mV on average.

Besides, we remark that the linearity of the membrane response is not so crucial
in the estimation procedure because in cases when the response is non-linear, the
algorithm finds the best linear approximation (in the least square sense).

Determining the level of noise injection

To estimate the kernel K, we inject a noisy current consisting of a sequence of
independent random current steps at sampling resolution ∆, with amplitude uni-
formly distributed between −Imax and +Imax. Imax is chosen so that the mem-
brane potential remains close to its resting level, while the electrode response is
large enough so as to maximize the signal/noise ratio. For an ideal electrode (i.e.,
very fast compared to the membrane), the membrane response is piecewise expo-
nential, it is a low-pass filtered version of RmI(t) with time constant τm, where
Rm is the membrane resistance, I(t) is the injected current and τm is the mem-
brane time constant. The standard deviation σV of the membrane potential is then
given by the following formula:

σV =

√√√√1− e−
∆
τm

1− e−
∆
τm

RmσI ≈
√

∆
6τm

RmImax

where σI is the standard deviation of the injected current, and assuming that the
sampling step ∆ is small compared to the membrane time constant τm. With the
values ∆ = 0.1 ms, τm = 10 ms, Rm = 40 MΩ and Imax = 0.5 nA, we obtain
σV = 0.8 mV, which is small enough. The expression we derived applies to an
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ideal electrode; for non-ideal electrodes (which filter the injected current), it gives
an upper bound for σV (approximately, τm is replaced by τm + τe, where τe is
the electrode time constant). The electrode time constant is of the same order
as the sampling step, therefore the electrode response can occasionally be close
to the upper bound ReImax, where Reis the electrode resistance. It is crucial to
estimate the range of the measured signal in order to adjust the acquisition system
correctly. With Re = 50 MΩ and Imax = 0.5 nA, the range is ±25 mV, which was
appropriate for our acquisition system.

5.4 Isolation of electrode kernel

Once the kernel of the system neuron+electrode has been determined, the electrode
kernel remains to be extracted. The idea is that the membrane is much slower than
the electrode, so that we can distinguish the two contributions in the full kernel.

As a first approximation, we can write K = Km +Ke, where Km is the mem-
brane kernel and Ke is the electrode kernel. We suppose that, in the regime in
which the kernel was obtained (i.e., small white noise injection), the membrane re-
sponds approximately as a first order low-pass linear filter (i.e., a resistor-capacitor
circuit), so that

Km(t) =
R

τ
e−t/τ

The electrode kernel is supposed to decay much faster, so that for large t, K(t) ∼
Km(t). This suggests the idea of estimating Km by fitting an exponential function
to the tail of K and subtracting it (Ke = K −Km).

However, a more careful examination of the circuit shows that the assumption
K = Km + Ke is a crude approximation. Indeed, the recorded potential can be
written as

Vr = Vm + Ue

= V0 +Km ∗ Im +Ke ∗ I

where Vm is the membrane potential (which is the quantity we want to recover), Ue
is the potential across the electrode, and Im is the current entering the membrane.
The electrode filters the command current I; a reasonable approximation is to set
Im = Ue/Re, where Re =

∫
Ke is the electrode resistance (defined as the ratio

Ue/I for a constant injected current I). It follows that the full kernel reads

K = Km ∗
Ke∫
Ke

+Ke (1)

Thus the membrane kernel cannot be simply subtracted from the total kernel. How-
ever we can still use the tail of K to estimate the membrane time constant.
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Using the tail of the kernel to estimate the membrane time constant

We assume that the electrode kernel Ke decays faster than the membrane kernel,
i.e., Ke(t) = o(e−t/τ ). In fact, we expect that Ke(t) ∼ αe−t/τe for large t, with
τe < τm. For large t, we have:

Km ∗
Ke

Re
=

R

Reτ

∫ t

0
e
s−t
τ Ke(s)ds

∼ R

Reτ
e−

t
τ

∫ +∞

0
e
s
τKe(s)ds

where the convergence of the integral is guaranteed by the dominated convergence
theorem. Thus, fitting an exponential function to the tail of the kernel gives the
correct membrane time constant, but not the correct membrane resistance (it over-
estimates the resistance). For example, for a simple RC electrode with resistance
Re and membrane time constant τe, we obtain

Km ∗
Ke

Re
=
R

τ
e−

t
τ × τ

τ − τe

It follows that the membrane resistance is overestimated by about τeτ (with τe <<
τ ). Thus for a (very) good recording the error would be around 1%.

How to define the “tail” of the kernel?

The result above is an equivalent when t goes to infinity. In practice, we need to
split the kernel K at some point T (the tail parameter) and to fit an exponential
function to the right part (the “tail” of the kernel). The larger this point T is, the
closer the tail is from the correct exponential function (e−t/τ ), but the fewer data
points are available for the fitting procedure. Thus, there is a compromise in the
choice of T . A rule of thumb is that T must be at least 10 times the expected elec-
trode time constant, while allowing the tail to contain at least one membrane time
constant. Typical values in our experiments were T ≈ 3 − 5 ms. Supplementary
Figure 1 shows that only the magnitude of T is important, the procedure is not very
sensitive to the precise value.

Removing the membrane kernel

We use equation (1) to extract the electrode kernel Ke from K. Here we assume
that the membrane kernel Km has already been recovered, i.e., the parameters Rm
and τm are known. In the next section we explain how to obtain good estimates
for these parameters, but for the moment we can assume that we have obtained the
correct parameters.

First, we need to estimate the electrode resistance. We have Re =
∫ +∞

0 K −
Rm. In practice only the first M steps of the kernel is known, so that the formula
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we need is actually:

Re =
∫ M∆

0
K −Rm +R∗me

−M∆
τm

where ∆ is the sampling step and R∗m is the estimate from fitting an exponential
function to the tail of the full kernel K.

Then we use the Z-transform to solve equation (1). Since convolutions are
transformed into products, we obtain:

Z[Ke] = Z[K]
(
Z[Km]
Re

+ 1)
)−1

We have
Z[Km] = Rm

∆
τm

1
1− λz−1

with λ = e−∆/τm . We define α = Rm∆
Reτm

and after a little algebra, we obtain

Z[Ke] = Z[K]

(
1− α

α+ 1
1

1− λ
α+1z

−1

)

The second term corresponds to a first order low-pass filter which can be imple-
mented recursively as follows:{

Y0 = α
α+1K0

Yn = α
α+1Kn + λ

α+1Yn−1 for n > 0.

then Ke = K − Y .

Optimizing the membrane parameters

The difficulty in using the procedure above is that only τm can be estimated from
the tail of the kernel K, while it is hard to estimate Rm reliably. If follows from
section 5.4 that if Rm is not estimated correctly, then the estimated electrode ker-
nel Ke includes a residual slow component (e−t/τm) from the membrane kernel.
Therefore we use the following strategy to obtain a better estimate of Rm: for each
value R∗m of the membrane resistance, the procedure gives an estimate of the elec-
trode kernel Ke(R∗m); for the true value R∗m = Rm we expect the residual slow
component to vanish, so that we search the resistance value which minimizes the
tail of Ke(R∗m):

Rm = argmin
R∗m

∫ +∞

T
Ke(R∗m)2dt

Since the variable to be adjusted is only one-dimensional, we simply use the golden
search algorithm to find the optimal resistance. Note that the formula above is exact
in the limit of large T .
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5.5 Implementation

The computer implementation should follow easily from the algorithms we have
previously described. In this section we outline a few important points and the gen-
eral procedure. The programs must run on a real time computer system connected
to the amplifier.

Estimation procedure

The estimation procedure lasts about 10 s and must be performed when the elec-
trode is impaled in the neuron (because the properties of the electrode are not the
same as in the extracellular medium). During this time, a uniform white noise
current (in the form of a sequence of independent random numbers) is injected in
the neuron. The signal is sent through an acquisition board to the amplifier. The
amplifier should be properly set, with the capacitance neutralization circuit set at
a high level (so as to reduce the time constant of the electrode). The bridge com-
pensation circuit must be off. The range of the uniform noise must be the same as
the range of the D/A converters of the acquisition board. The range of the input
A/D converters, which relay the voltage recording to the computer, must be large
enough to avoid clipping (it is best to check on an external oscilloscope). Although
the membrane potential does not vary much, the electrode voltage is much more
variable. For example, if the range of the uniform current is ±1 nA and the elec-
trode is very fast (i.e., faster than the acquisition rate) and its resistance is 100 MΩ
(sharp electrode), then the potential would vary between −100 mV and 100 mV.
Note that it can be useful to change the offset of the voltage output of the amplifier
so that the resting potential is close to 0 mV.

The computer program does not need to store the whole sequence of measures
(I and V ). It is enough so store in memory the running averages of InIn−i, VnIn−i,
In and Vn. At the end of the stimulation, the program applies the Levinson-Durbin
algorithm to find the full kernel and extract the electrode kernel with the algorithms
described previously (exponential fitting of the tail followed by suppression of the
membrane kernel). This part of the algorithm is not required to run in real time.
Subsequently, only the electrode kernel needs to be stored. Typically, the resulting
kernel is short and only the first tens of steps are non zero.

Online compensation

Once the electrode kernel has been calculated, it can be used in real time to esti-
mate the electrode voltage and subtract it from the recording. Again, the bridge
compensation circuit must be turned off on the amplifier. Then it must be remem-
bered that the potential actually recorded by the system is the sum of the membrane
and the electrode responses and therefore it can be much larger than the membrane
potential. The electrode voltage is subtracted in real time by a convolution, the
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input current I being known:

Vm(n) = Vr(n)−
l−1∑
p=0

Ke(p)I(n− p)

where l is the number of steps in the electrode kernel (typically 30–50). Thus, the
value of the previous l steps of the injected current must be held in memory.

6 Typical sources of error

Here we enumerate a number of typical mistakes that can occur during the esti-
mation or the compensation stage. Many of these errors can be easily noticed as
anomalies in the electrode kernel.

The bridge compensation is on: in this case the program can still capture a ker-
nel but it has a strange shape with a total resistance close to 0 (if it is well
adjusted), which makes the membrane suppression procedure fail.

Input or output ranges on the acquisition board are not correctly set: if the ran-
ges are too large, the method only loses some accuracy; however if the ranges
are not large enough, then clipping occurs, which can be disastrous both at
the estimation stage and at the compensation stage. It can remain unnoticed
at the estimation stage because it only results in errors in the estimated ker-
nel. At the compensation stage it results in large compensation errors which
can be seen as noise on the compensated output in current clamp. It is more
serious in dynamic clamp because it can result in losing the cell because of
oscillatory instabilities.

The kernel is too large: if the number of steps M in the full kernel is very large,
then during the estimation procedure the program may not have enough time
to compute all the running averages within one time step. Depending on
the real time system, this can result in freezing the program or in errors in
the kernel. The latter is more problematic because it can remain unnoticed:
in this case, the program sometimes takes more than one step to do all the
required operations and it can be an important source of error. Therefore it
is important to check that the kernel is not too large for the system.

The tail parameter is too small: one must specify what part of the kernel (which
we called the tail) is used for estimating the membrane contribution. If the
splitting time is too small, then the tail contains part of the electrode kernel,
which makes the procedure fail. This can sometimes be seen as a negative
part appearing in the electrode kernel (usually the kernel is entirely positive).

The tail parameter is too large: if the splitting time is too large, then remaining
tail is too small to estimate the membrane kernel reliably. This also results
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in errors in the electrode kernel (although not as serious). There is however
a broad range of values of this parameter for which there is no significant
error in the kernel (Supplementary Figure 1).

The capacitance neutralization has changed: it must be remembered that the elec-
trode kernel captures in fact not only the electrode properties, but the prop-
erties of the whole recording setup, including the amplifier. Therefore if any
circuit is used on the amplifier, their setting must remain unchanged as long
the same electrode kernel is used, otherwise the estimation procedure should
be run again.

The electrode properties have changed: it happens that the electrode properties
change during an experiment for some reason (e.g. small movements of the
electrode). It results in compensation errors which can be seen as abnormal
noise on the traces (with current noise injection). In this case the estimation
procedure must be run again (just like with the standard bridge compensation
method). The best practice is to run the estimation once in a while in order
to check that the electrode properties have not changed.
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